The Goldsmith Lab

First-Principles Modeling of Catalysts and Materials

University of Michigan – Ann Arbor, Department of Chemical Engineering

Theme 1: Catalysis for Air and Water Pollution Reduction

Single Atom and Nanocluster Catalysis for CO₂ reduction

- CO₂ can be reduced via H₂ to produce either methane (CH₄) or carbon monoxide (CO). Depending on the presence of nanoclusters or single atoms.
- What impact on catalytic activity and selectivity can be seen from varying the metal nanocluster size and support surface?

Pl₃Ru₃ alloys for electrocatalytic nitrate reduction

- Aqueous nitrate (NO₃⁻), a major water pollutant, can be remediated with electrocatalytic nitrate reduction.
- Metal alloys can perform this reaction with higher activity (higher turnover frequency, TOF) than their pure-metal counterparts.
- What alloy compositions make the most active and selective catalyst?

Theme 2: Machine Learning to Accelerate Catalyst Design

Interpretable, Theory-Guided Machine Learning for Chemisorption on Alloys

- The objective of this research is to develop physically transparent and accurate structure-property models for understanding chemical interactions on alloy surfaces.

Machine Learning Enabled High-Throughput Evaluation of Catalysts

- Machine learning applied to alloys yields insights into the effect of the number of d-electrons in the ligand metal for various adsorbates.

Theme 3: Catalysis for Renewable Energy Generation, Use, and Storage

Redox Flow Batteries for Large-Scale Energy Storage

- Redox flow batteries are used to match power grid supply to demand, which is increasingly relevant as we transition to intermittent renewable energy sources.

Metal and Bimetallic Catalysts for Bio-Oil Hydrogenation

- Biomass-derived molecules can be upgraded to fuels and industrially relevant chemicals using aqueous-phase electrocatalytic hydrogenation driven with renewable electricity.

Methods A: First-principles modeling and molecular simulation techniques

- Cutting-edge computational techniques yield an accurate description of catalyst and material electronic and geometric properties under realistic conditions.
- Minima and saddle search algorithms

Methods B: Data science and machine learning for materials

- Data analytics applied to catalyst data offers opportunities to advance discovery.
- We develop and apply machine learning approaches to uncover catalytic insights.

The Goldsmith Lab

- 5 PhD students
- 4 Undergraduate students

Goldsmith Lab (Fall 2020)

Combining first-principles (electronic-structure theory) modeling and data science to understand catalysts and materials.