The Department of Chemical Engineering welcomed two new faculty members this fall, Maciek Antoniewicz and Jovan Kamcev. Maciek Antoniewicz joined the faculty as a professor this fall. He was previously the Centennial Professor of Chemical & Biomolecular Engineering at the University of Delaware.

Maciek was born and raised in Poland. When he was 11 years old, his family moved to the Netherlands and eventually settled in Arnhem. In 1994, he moved to the historic city of Delft to attend college at the Delft University of Technology, where he received his bachelor's degree in 1998 and master's degree in 2000, both in chemical engineering.

In 1999, he received a national scholarship to pursue the last 12 months of his master's degree research at the Massachusetts Institute of Technology (MIT). After completing his research there, he stayed at MIT and pursued doctoral studies in chemical engineering under the supervision of Gregory Stephanopoulos.

During this time, Maciek developed a novel framework for investigating the metabolism of living cells through the use of stable-isotope tracers and mass spectrometry. His theories became the foundation for next-generation 13C metabolic flux analysis methods that are now widely used in metabolic engineering and medical research to quantify in vivo metabolic rates and discover novel metabolic pathways.

After completing his PhD in 2006, he did post-doctoral research at DuPont. He started his independent career as an assistant professor at the University of Delaware in 2007 where he quickly rose through the ranks and was promoted to an endowed full professor in 2017.

Maciek's research focuses on developing next generation techniques for analyzing, engineering, and manipulating microbial and mammalian cells. These techniques are applied to specific problems in biotechnology (biofuels, pharmaceuticals) and medicine (cancer, obesity, diabetes).

In his research, he makes use of state-of-the-art tools in cell culture, 13C metabolic flux analysis, mass spectrometry, molecular biology, bioinformatics and computational biology. His current interests include elucidating syntrophic interactions in microbial communities, analyzing compartment-specific fluxes in mammalian cells, cancer metabolism, and engineering microbes for enhanced utilization of renewable substrates and production of value-added chemicals. His research is funded by several federal agencies and pharmaceutical companies.

As he begins his first semester at Michigan, Maciek says, "I am looking forward to expanding my research into new and exciting directions at the interface of biology, engineering and medicine."

Maciek has received several awards in recognition of his research, including the DuPont Young Professor Award (2008), the James E. Bailey Young Investigator Award in Metabolic Engineering (2008), the NSF CAREER Award (2011), and the Biotechnology and Bioengineering Daniel I.C. Wang Award (2015).

He and his wife, Rosanne, have a son and a daughter. His wife, a physician-scientist, will join the faculty in the School of Medicine. They were drawn to Ann Arbor because of Michigan's strong medical school and engineering departments, opportunities to collaborate with many outstanding faculty across the campus in life sciences and engineering, and the excellent schools and outdoor activities available to their children.